
HEAT CONDUCTION AND THERMOELASTIC STRESSES

NONIDEAL CONTACT PROBLEM OF NONSTATIONARY
HEAT CONDUCTION FOR TWO HALF-SPACES

V. S. Sazonov UDC 536.24

A nonideal contact problem of nonstationary heat conduction for two half-spaces with arbitrary initial condi-
tions is considered. By introducing unknown conjugate functions and subsequent Laplace transformation, an
integral representation for the problem solution has been found; equations in the region of transforms are
solved with the aid of Green’s functions. In the particular case of exponential distributions of initial tempera-
tures an accurate solution of the problem has been achieved.

Introduction. At the present time a fair amount of attention has been devoted to the problems of obtaining
accurate solutions of heat conduction equations under different boundary-value conditions [1]. Analytical solutions are
of interest, first, purely scientifically and, second, as test problems in calculations by numerical schemes and for the
development of the latter. In the theory of heat conduction, nonideally contact boundary-value problems have been
studied to a considerably lesser extent. The development of numerical schemes for them is at the initial stage now, so
that any analytical investigations in the field are of interest. Note that in the case of an ideal contact of half-spaces,
where their initial temperatures are given by arbitrary smooth functions of the coordinate, it seems that the boundary-
value problem of heat conduction has been solved for the first time by Datsev [2]. Thereafter it was also tackled by
other researchers by other methods, e.g., [3, 4]. In what follows, an analogous statement of the problem is considered
in application to a nonideal contact of half-spaces; an integral representation of temperature distributions has been ob-
tained. The method of Laplace transformations in the time domain is used for the solution. The boundary-value prob-
lem in the region of transforms is solved by the method of Green’s functions. In the particular case, the equations
obtained yield accurate solutions of the problem with exponential and constant initial distributions of temperatures.

Statement and Solution of the Problem. Let a contact surface be located at the coordinate origin x = 0. We
assume that the temperature of the half-spaces at the initial instant of time is given in the form of smooth functions
T10(x) and T20(x). Then the problem is described by the heat conduction equations

∂T1

∂t
 = a1 

∂2
T1

∂x
2  ,   x < 0 ,   t > 0 ;   

∂T2

∂t
 = a2 

∂2
T2

∂x
2  ,   x > 0 ,   t > 0 ; (1)

initial conditions

T1 (x, 0) = T10 (x) ,   x < 0 ;     T2 (x, 0) = T20 (x) ,   x > 0 ; (2)

and by conjugate boundary conditions that represent heat transfer by the Newton law:

λ1 
∂T1

∂x



x=−0

 = λ2 
∂T2

∂x



x=+0

 = α T2 (+ 0, t) − T1 (− 0, t) . (3)
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It is assumed that the temperatures in each half-space are limited in value:

T1 (x, t) ,   T2 (x, t) < ∞ . (4)

The existence and uniqueness theorem of solving heat conduction problems under the given conditions of con-
jugation and its proof are given, e.g., in [5], however, despite the simplicity of formulation of problem (1)–(3), its so-
lution is absent at the present time. Conditions (3) are specific in that the temperature values on each side of the
contact boundary are time-dependent. We will denote these, as yet unknown, conjugate functions as follows:

T1 (− 0, t) = ϕ (t) ,   T2 (+ 0, t) = ψ (t) . (5)

To find the solution of system (1)–(5) we will take the Laplace transform of (1)–(3) with respect to time that
maps the time domain onto the region of the complex variable s:

TL (x, s) = ∫ 
0

∞

exp (− st) T (x, t) dt .

Then, subject to (1)–(3), (5), we obtain

T1L
′′  (x, s) − 

s
a1

 T1L (x, s) + F1 (x) = 0 ,   x < 0 ,   T2L′′  (x, s) − 
s

a2
 T2L (x, s) + F2 (x) = 0 ,   x > 0 ; (6)

T1L
′  (− 0, s) − H1 [ψL (s) − ϕL (s)] = 0 ,   T2L

′  (+ 0, s) + H2 [ϕL (s) − ψL (s)] = 0 ; (7)

T1L (− 0, s) = ϕL (s),   T2L (+ 0, s) = ψL (s) , (8)

where F1(x) = T10(x) ⁄ a1; F2(x) = T20(x) ⁄ a2; H1 = α ⁄ λ1; H2 = α ⁄ λ2. Boundedness conditions (4) will go over into
the following conditions:

T1 (x, s) ,     T2 (x, s) < ∞ . (9)

By virtue of the linearity of boundary-value problems (6)–(7), we will represent their solution in the form

T1L (x, s) = U1L (x, s) + V1L (x, s) ,   x < 0 ;   T2L (x, s) = U2L (x, s) + V2L (x, s) ,   x > 0 , (10)

where U1L(x, s) and U2L(x, s) are the solutions of the corresponding differential equations (6) under inhomogeneous
boundary conditions (7) in the case where F1(x) = F2(x) = 0, i.e., the solutions of the problems (the fundamental so-
lutions of the inhomogeneous boundary-value problem, e.g. [6])

U1L
′′  − k1

2
U1L = 0 ,   x < 0 ,   U1L

′  (− 0) + H1U1L (− 0) = H1ψL ; (11)
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U2L′′  − k2
2
U2L = 0 ,   x > 0 ,   U2L′  (+ 0) − H2U2L (+ 0) = H2ϕL , (12)

where k1 = √s ⁄ a1  and k2 = √s ⁄ a2 , whereas U1L(x, s) and U2L(x, s) are the solutions of inhomogeneous differential
equations for transforms under inhomogeneous boundary conditions:

V1L
′′  − k1

2
V1L = − F1 (x) ,   x < 0 ,     V1L

′  (− 0) + H1V1L (− 0) = 0 ; (13)

V2L
′′  − k2

2
V2L = − F2 (x) ,   x > 0 ,     V2L

′  (+ 0) − H2V2L (+ 0) = 0 . (14)

We will represent the general solution of problem (11) in terms of the fundamental solution:

U1L = 
H1ϕL

k1 + H1
 exp (k1x) ,   x < 0 . (15)

Here, the boundedness condition (9) is used for x → −∞. Analogously, the general solution of problem (12) is written
in the form

U2L = − 
H2ϕL

k2 + H2
 exp (− k2x) ,   x > 0 . (16)

Now, we will find the solution of problem (13), which is an inhomogeneous differential equation with a ho-
mogeneous boundary condition at the place of contact. We will represent the Green’s function in terms of the funda-
mental solutions of the corresponding homogeneous equation in the following form:

G1 (x, x
_
 ) = 





m1 (x
_
) exp (k1x) + m2 (x

_
) exp (− k1x) ,   − ∞ ≤ x ≤ x

_
 ≤ − 0 ;

n1 (x
_
) exp (k1x) + n2 (x

_
) exp (− k1x) ,   − ∞ ≤ x

_
 ≤ x ≤ − 0 .

(17)

On the basis of the general rule (e.g., [6]), the Green’s function should be, first, continuous at the point x = x
_
, i.e.,

m1 exp (k1x
_
) + m2 exp (− k1x

_
) = n1 exp (k1x

_
) + n2 exp (− k1x

_
) ; (18)

and, second, for a jump in the derivative G1 over x at the point x = x
_
 the following equation should hold:

(n1 − m1) exp (k1x
_
) − (n2 − m2) exp (− k1x

_
) = 

1
k1

 . (19)

Moreover, the unknown Green’s function must satisfy the boundary condition (the right-hand side expression of (13))
at the place of contact (x = 0), which, subject to the lower line in (17) and the expression for the derivative G1x′ , will
yield

n1k1 − n2k1 + H1 (n1 + n2) = 0 . (20)

Taking into account the condition (14) of the boundedness of solution for x → −∞, from the upper line of (17) we
may adopt at once that G1(−∞, x

_
) = 0, i.e.,
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m2 = 0 . (21)

The solution of system (18), (19) yields

m2 − n2 = 
1

2k1
 exp (k1x

_
) ,   n1 − m1 = 

1
2k1

 exp (− k1x
_
) . (22)

Thus, subject to (21), from (20) and (22) we find

n2 = − 
1

2k1
 exp (k1x

_
) ,   n1 = 

H1 − k1

2k1 (k1 + H1)
 exp (k1x

_
) ,   m1 = 

1

2k1
 




H1 − k1

k1 + H1
 exp (k1x

_
) − exp (− k1x

_
)



 . (23)

Substituting (21) and (23) into (17), we write the Green’s function in the form

G1 (x, x
_
 ) = 













1

2k1
 




k1 − H1

k1 + H1
 exp (k1x

_
) − exp (− k1x

_
)



 exp (k1x) ,   − ∞ ≤ x ≤ x

_
 ≤ − 0 ;

1

2k1
 




k1 − H1

k1 + H1
 exp (k1x) − exp (− k1x)




 exp (k1x

_
) ,   − ∞ ≤ x

_
 ≤ x ≤ − 0 .

(24)

According to the well-known rule of constructing a solution of an inhomogeneous equation by a homogeneous one
(problem (13)), using the Green’s function (24) found, we write an equation for the transforms:

V1 (x) = − ∫ 
−∞

−0

G (x, x
_
) F1 (x

_
) dx

_
 . (25)

Substituting (24) into (25), we obtain the solution of problem (13) in the region of transforms:

V1L (x, s) = 
1

2k1
 






exp (− k1x) ∫ 

−∞

x

exp (k1x
_
) F1 (x

_
) dx

_
 + exp (k1x) ∫ 

x

−0

exp (− k1x
_
) F1 (x

_
) dx

_
 

− 
H1 − k1

H1 + k1
 exp (k1x) ∫ 

−∞

x

exp (k1x
_
) F1 (x

_
) dx

_





 ,     x < 0 . (26)

The solution of problem (14) is written analogously:

V2L (x, s) = 
1

2k2
 






exp (k2x) ∫ 

x

+∞

exp (− k2x
_
) F2 (x

_
) dx

_
 + exp (− k2x) ∫ 

+0

x

exp (k2x
_
) F2 (x

_
) dx

_
 

− 
H2 − k2

H2 + k2
 exp (− k2x) ∫ 

+0

+∞

exp (− k2x
_
) F2 (x

_
) dx

_





 ,     x > 0 . (27)

According to (10), (15), and (26), the transform of the unknown solution of the basic problem in the negative half-
space will have the form

T1L (x, s) = 
H1ψL

H1 + k1
 exp (k1x) + 

1

2k1
 







k1 − H1

H1 + k1
 exp (k1x) ∫ 

−∞

0

exp (k1x
_
) F1 (x

_
) dx

_
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+ exp (− k1x) ∫ 
−∞

x

exp (k1x
_
) F1 (x

_
) dx

_
 + exp (k1x) ∫ 

x

−0

exp (− k1x
_
) F1 (x

_
) dx

_





 ,     x < 0 , (28)

whereas, according to (10), (16), and (27), the transform in the positive half-space has the form

T2L (x, s) = 
H2ϕL

H2 + k2
 exp (− k2x) + 

1

2k2
 







k2 − H2

H2 + k2
 exp (− k2x) ∫ 

0

+∞

exp (− k2x
_
) F2 (x

_
) dx

_
 

+ exp (k2x) ∫ 
x

+∞

exp (− k2x
_
) F2 (x

_
) dx

_
 + exp (− k2x) ∫ 

+0

x

exp (k2x
_
) F2 (x

_
) dx

_





 ,     x > 0 . (29)

Based on the notation (5) introduced, as well as on the unknown functions (28) and (29) obtained, we have

T1Lx=−0 = ϕL = 
1

H1 + k1
 






H1ψL + ∫ 

−∞

−0

exp (k1x
_
 ) F1 (x

_
) dx

_





 , (30)

T2Lx=+0 = ψL = 
1

H2 + k2
 






H2ϕL + ∫ 

+0

+∞

exp (− k2x
_
 ) F2 (x

_
) dx

_





 . (31)

Thus, for determining the functions ϕL and ψL we have a system of two equations (30) and (31). If in these
equations we go over from the functions F1(x

_
) and F2(x

_
) to T1(x

_
) and T2(x

_
) and replace k1 and k2 (except for the

terms with exponents) by their values given in terms of s, a1, and s2, then this system acquires the form




1 + 

H1

√s ⁄ a1




 ϕL − 

H1

√s ⁄ a1
 ψL = I10 (s) ,   − 

H2

√s ⁄ a2
 ϕL + 




1 + 

H2

√s ⁄ a2




 ψL = I20 (s) , (32)

where

I10 (s) = 
1

√a1s
 ∫ 
−∞

−0

exp (k1x
_
) T1 (x

_
) dx

_
 ,   I20 (s) = 

1
√a2s

 ∫ 
+0

+∞

exp (− k2x
_
) T2 (x

_
) dx

_
 . (33)

The solutions of system (32) for the transforms of unknown functions are given by the equations

ϕL = 
I10 (√s  + H2 √a2) + I10H2 √a2

√s  + H2 √a2  + H1 √a1
 ,   ψL = 

I20 (√s  + H1 √a1 ) + I10H2 √a2

√s  + H2 √a2  + H1 √a1
 . (34)

Substituting (34) into (28) and (29), taking into account the notation adopted, we obtain the transforms of the
unknown temperature distributions:

T1L (x, s) = 
exp (k1x)

H1k2 + H2k1 + k1k2
 




H2k1 + k2 (k1 − H1)
2k1

 i1 + H1i2



 

+ 
1

2k1
 (exp (− k1x) i1

x
 + exp (k1x) i1x) ,   x < 0 ; (35)

T2L (x, s) = 
exp (− k2x)

H1k2 + H2k1 + k1k2
 




H1k2 + k1 (k2 − H2)
2k2

 i2 + H2i1



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+ 
1

2k2
 (exp (k2x) i2x + exp (− k2x) i2

x) ,   x > 0 , (36)

where the following notations are introduced:

i1 = ∫ 
−∞

−0

exp (k1x
_
) F1 (x

_
) dx

_
 ,   i2 = ∫ 

+0

+∞

exp (− k2x
_
) F2 (x

_
) dx

_
 ,   i1

x
 = ∫ 

−∞

x

exp (k1x
_
) F1 (x

_
) dx

_
 ,

i1x = ∫ 
x

−0

exp (− k1x
_
) F1 (x

_
) dx

_
 ,   i2

x
 = ∫ 

+0

x

exp (k2x
_
) F2 (x

_
) dx

_
 ,   i2x = ∫ 

x

+∞

exp (− k2x
_
) F2 (x

_
) dx

_
 , (37)

with I10 = i1√a1
 ⁄ s  and I20 = i2√a2

 ⁄ s . The symbol x at i1 and i2 is an index and not an exponent. We will write the
final expression for T1L and T2L, having replaced k1 and k2 in (35) and (36) by their values k1(s) and k2(s):

T1L (x, s) = 
√a1

2
 




H2 √a2  − H1 √a1  + √s

√s  (H1 √a1  + H2 √a2  + √s )
 exp (√s ⁄ a1 x) i1 

+ 
2H1 √a2

√s  (H1 √a1  + H2 √a2  + √s)
 exp (√s ⁄ a1  x) i2 + 

1

√s
 exp (− √s ⁄ a1 x) i1

x
 + exp (√s ⁄ a1  x) i1x






 ,   x < 0 . (38)

In what follows, equations for temperatures and their transforms are given only for the negative half-space,
since for the positive one they are symmetric about indices. Substituting (37) into (38), we find

T1L (x, s) = 
√a1

2
 






 ∫ 
−∞

−0
H2 √a2  − H1 √a1  + √s

√s  (b + √s)
 exp (√s ⁄ a1  (x + x

_
)) F1 (x

_
) dx

_
 

  + 2H1 √a2  ∫ 
+0

+∞
1

√s  (b + √s)
 exp 









x

√a1
 − 

x
_

√a2




 √s




 F2 (x

_
) dx

_
 

+ ∫ 
−∞

x
1

√s
 exp 









x

√a1
 − 

x
_

√a2




 √s




 F1 (x

_
) dx

_
 + ∫ 

x

−0
1

√s
 exp (− √s ⁄ a1  (x

_
 − x)) F1 (x

_
) dx

_





 ,   x < 0 . (39)

Passing in expression (39) from the functions F1(x
_
) and F2(x

_
) to T10(x

_
) and T20(x

_
) and calculating the inverse trans-

form, we obtain the sought-for distribution of temperature in the negative half-space:

T1 (x, t) = H1 










− ∫ 
−∞

−0

exp 



b

2
t − b 

x + x
_

√a1




 erfc 




b √t  − 

x + x
_

2 √a1t




 T10 (x

_
) dx

_
 

+ √a1

a2
   ∫ 
+0

+∞

exp 



b

2
t − b 





x

√a1
 − 

x
_

√a2








 erfc 




b √t  − 





x

√a1
 − 

x
_

√a2




 

1

2 √t




 T20 (x

_
) dx

_








 

+ 
1

2 √πa1t
 ∫ 
−∞

−0

 



exp 




− 

(x + x
_
 )2

4a1t




 + exp 




− 

(x − x
_
 )2

4a1t








 T10 (x

_
) dx

_
 ,   x < 0 . (40)
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Based on the above-mentioned principle of symmetry, the sought-for temperature distribution for the positive
half-space is written in the form

T2 (x, t) = H2 










− ∫ 
+0

+∞

exp 



b

2
t + b 

x + x
_

√a1




 erfc 




b √t  + 

x + x
_

2 √a1t




 T20 (x

_
) dx

_
 

+ √a2

a1
   ∫ 
−∞

−0

exp 



b

2
t − b 





x
_

√a1
 − 

x

√a2








 erfc 




b √t  − 





x
_

√a1
 − 

x

√a2




 

1

2 √t




 T10 (x

_
) dx

_








 

+ 
1

2 √πa2t
 ∫ 
+0

+∞

 



exp 




− 

(x
_
 + x)2

4a2t




 + exp 




− 

(x
_
 − x)2

4a2t








 T20 (x

_
) dx

_
 ,   x > 0 . (41)

We can check the validity of the solutions obtained by calculating the above-given integrals at constant initial tempera-
tures (T10 = T10

 ∗  = const and T20 = T20
 ∗  = const). In this case, Eqs. (40) and (41) yield an accurate solution [7].

A Particular Case of Exponential Initial Conditions. We will consider the exponential distribution of initial
temperatures:

T1 (x, 0) = T10 (x) = T10
∗

 exp (h1x) ,   x < 0 ,   h1 > 0 ;

T2 (x, 0) = T20 (x) = T20
∗

 exp (− h2x) ,   x > 0 ,   h2 > 0 . (42)

By virtue of the symmetry of physical processes about the plane x = 0, it is sufficient to restrict ourselves to searching
for a solution only for the negative half-space. We write it in the form

T1 (x, t) = H1 




J1 + √a1

a2
 J2




 + 

1

2 √πa1t
 J3 , (43)

where J1, J2, and J3 are the first, second, and third integral expressions in solution (40). To calculate the first integral,
we introduce the change of variables and transformations:

b √t  − 
x + x

_

2 √a1t
 = y ,   x

_
 = 2b √a1t  − x − 2 √a1t  y ,   dx

_
 = − 2 √a1t  dy ,   yx

_
=−∞ = + ∞ ,   yx

_
=−0 = b √t  − 

x
2 √a1t

 .

Then

J1 = − ∫ 
−∞

−0

exp 



b

2
t − b 

x + x
_

√a1




 erfc 




b √t  − 

x + x
_

2 √a1




 T10

∗
 exp (h1x

_
 ) dx

_
  

= − 2T10
∗

 √a1t  exp − b
2
t + h1 (2b √a1t  − x)     ∫ 

b√t  − 
x

2√a1t

+∞

    exp 2 (b − h1 √a1 ) √t  y erfc (y) .

In the second integral J2 we introduce the change of variables and transformations:
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b √t  − 




x

√a1
 − 

x
_

√a2




 

1

2 √t
 = z ,   x

_
 = 2b √a2t  + √a2

a1
 x + 2 √a2t  z ,   

dx
_
 = 2 √a2t  dz ,   zx

_
=+0 = b √t  − 

x

2 √a1t
 ,   zx

_
=+∞ = + ∞ .

In such a case

J2 = ∫ 
+0

+∞

exp 



b

2
t − b 





x

√a1
 − 

x
_

√a2








 erfc 




b √t  − 





x

√a1
 − 

x
_

√a2




 

1

2 √t




 T20

∗
 exp (− h2x

_
 ) dx

_
 

= 2T20
∗

 √a2t  exp 




− b

2
t + h2 




2b √a2t  − √a2

a1
 x 








     ∫ 

b√t  − x
2√a1t

+∞

    exp 2 (b − h2 √a2 ) √t  z erfc (z) dz .

Now, we determine the expressions in the parentheses in Eq. (43):

J1 + √a2
a1

 J2 = 2 √a1t  exp (− b
2
t) 











T20
∗

 exp 




h2 




2b √a2t  − √a2

a1
 x 







   ∫ 

b√t  − 
x

2√a1t

+∞

  exp 2 (b − h2 √a2 ) √t  z erfc (z) dz 

− T10
∗

 exp (h1 (2b √a1t  − x))     ∫ 
b√t  − 

x
2√a1t

+∞

    exp (2 (b − h1 √a1 ) √t  y) erfc (y) dy










 . (44)

We calculate "by parts" the first integral in equality (44), having denoted it by J4:

J4 =     ∫ 
b√t  − 

x
2√a1t

+∞

    exp (2 (b − h2 √a2 ) √t  z) erfc (z) dz

= 
1

2 (b − h2 √a2 ) √t
 













erfc (z) exp (2 (b − h2 √a2) √t z)







b√t  − 
x

2√a1t

+∞

−     ∫ 
b√t  − 

x
2√a1t

+∞

    exp (2 (b − h2 √a2 ) √t  z)erfc (z) dz









 .

Using the expression of the function erfc (z) at high values of z (which has already been used earlier), it can be easily
shown that
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erfc (z) exp (2 (b − h2 √a2) √t z)z=+∞
 = 0 . 

Taking into account well-known rule

d
dz

 erfc (z) = − erf (z) = − 
2
√π

 exp (− z
2) ,

we obtain

J4 = 
1

2 (b − h2 √a2 ) √t
 









− exp 


2 (b − h2 √a2 ) √t  


b √t  − 

x
2 √a1t








 erfc 


b √t  − 

x
2 √a1t




 

+ 
2
π

     ∫ 
b√t  − 

x
2√a1t

+∞

    exp (2 (b − h2 √a2) √t  z − z
2) dz











 .

According to the reference data [8], the integral in the last expression is equal to

       ∫ 
b√t  − 

x
2√a1t

+∞

    exp (2 (b − h2 √a2 ) √t  z − z
2) dz = 

√π
2

 exp (2 (b − h2 √a2  )2 t) erfc 

h2 √a2t  − 

x
2 √a1t




 ,

therefore

J4 = 
1

2 (b − h2 √a2 ) √t
 

− exp 


2 (b − h2 √a2 ) √t 


b √t  − 

x
2 √a1t








 erfc 


b √t  − 

x
2 √a1t




 

+ exp 2 (b − h2 √a2 )
2
 t erfc 


h2 √a2t  − 

x
2 √a1t







 . (45)

Along with the integral J4 we will consider the second integral J4
∗ which also enters into equality (44):

J4
∗
 =     ∫ 
b√t  − 

x
2√a1t

+∞

    exp (2 (b − h1 √a1 ) √t  y) erfc (y) dy .

Just as in the calculation of J4, we will apply the rule of integration by parts; then, based on the reference data [8]
and the above-indicated properties of the function erfc (z), we obtain

J4
∗
 = 

1
2 (b − h1 √a1 ) √t

 

− exp 


2 (b − h1 √a1 ) √t  


b √t  − 

x
2 √a1t








 erfc 


b √t  − 

x
2 √a1t




 

+ exp 2 (b − h1 √a1 )
2
 t erfc 


h1 √a1t  − 

x
2 √a1t








 . (46)

Using (45) and (46), expression (44) can be rearranged as
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J1 + √a2

a1
 J2 = √a1  















T10
∗

b − h1 √a1
 − 

T20
∗

b − h2 √a2







 exp 




b

2
t − 

bx

√a1




 erfc 




b √t  − 

x

2 √a1t




 

+ 
T10
∗

b − h1 √a1
 exp (h1

2
a1t − h1x) erfc 


h1 √a1t  − 

x
2 √a1t











 . (47)

Now, we calculate the last, third, integral in expression (43):

J3 = ∫ 
−∞

−0

 



exp 




− 

(x + x
_
 )2

4a1t




 + exp 




− 

(x − x
_
 )2

4a1t








 exp (h1x

_
 ) dx

_
 . (48)

First, we consider the integral of the first term in (48) (having denoted it by J3
∗). As before, we introduce the

change of variable and the transformations

x + x
_

2 √a1t
 = y ,   dx

_
 = 2 √a1t  dy ,   x

_
 = − x − 2 √a1t  y ,   yx

_
=−∞ = − ∞ ,   yx

_
=−0 = 

x
2 √a1t

 . 

Then

J3
+
 = ∫ 

−∞

−0

exp 



− 

(x + x
_
 )2

4a1t




 exp (h1x

_
 ) dx

_
 = 2 √a1t    ∫ 

− 
x

2 √a1t

+∞

  exp (− y
2
 + 2h1 √a1t  y) dy .

Using the tabular data of [8], for this expression we obtain

J3
+
 = √πa1t  exp (h1 (h1a1t − x)) erfc 


h1 √a1t  − 

x
2 √a1t




 . (49)

The integral involving the second term in (48) (denoted by J3
−) is calculated similarly to J3

+. We introduce the
change of variables and transformation:

x + x
_

2 √a1t
 = z ,   dx

_
 = − 2 √a1t  dz ,   x

_
 = x − 2 √a1t  z ,   zx

_
=−∞ = − ∞ ,   zx

_
=−0 = 

x
2 √a1t

 .

As a result

J3
−
 = ∫ 

−∞

−0

exp 



− 

(x − x
_
 )2

4a1t




 exp (h1x

_
 ) dx

_
 = √πa1t  exp (h1 (h1a1t + x)) erfc 


h1 √a1t  + 

x
2 √a1t




 . (50)

Summing up (49) and (50), we obtain

J3 = J3
+
 + J3

−
 = √πa1t  exp (h1

2
a1t) 

× 

exp (h1x) erfc 


h1 √a1t  + 

x
2 √a1t




 + exp (− h1x) erfc 


h1 √a1t  − 

x
2 √a1t








 . (51)

Subject to (47) and (51), the sought-for solution (43) is transformed as
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T1 (x, t) = H1 √a1  














T10
∗

b − h1 √a1
 − 

T20
∗

b − h2 √a2







 exp 




b

2
t − 

bx

√a1




 erfc 




b √t  − 

x

2 √a1t




 

+ 
T20
∗

b − h2 √a2
 exp h2

2
a2t − h2 √a2

 ⁄ a1 x erfc 

h2 √a2t  − 

x
2 √a1t




 

− 
T10
∗

b − h1 √a1
 exp h1

2
a1t − h1x erfc 




h1 √a1t  − 

x
2 √a1t











 

+ 
T10
∗

2
 exp (h1

2
a1t) 


exp (h1x) erf 


h1 √a1t  + 

x
2 √a1t




 + exp (− h1x) erf 


h1 √a1t  − 

x
2 √a1t








 ,   x < 0 . (52)

By virtue of the symmetry of the problem about the plane x = 0, the solution for the positive half-space can
be written on the basis of (52) as

T2 (x, t) = H2 √a2  














T20
∗

b − h2 √a2
 − 

T10
∗

b − h1 √a1







 exp 




b

2
t + 

bx

√a2




 erfc 




b √t  + 

x

2 √a2t




 

+ 
T10
∗

b − h1 √a1
 exp h1

2
a1t + h1 √a1

 ⁄ a2 x erfc 



h1 √a1t  + 

x

2 √a2t




 

− 
T20
∗

b − h2 √a2
 exp h2

2
a2t + h1x erfc 




h2 √a2t  + 

x

2 √a2t











 

+ 
T20
∗

2
 exp (h2

2
a2t) 


exp (− h2x) erf 


h2 √a2t  − 

x
2 √a2t




 + exp (h2x) erf 


h2 √a2t  + 

x
2 √a2t








 ,   x > 0 . (53)

Checking the Solution (the Case of Constant Initial Temperatures). The correctness of the solution ob-
tained can be verified by considering the case of constant initial temperatures, i.e., where h1 = h2 = 0. Substitution of
these values into (52) and (53) yields

T1 (x, t) = T10
∗

 − 
T10
∗

 − T20
∗

1 + Kε1

 



erfc 




− 

x

2 √a1t




 − exp 




b

2
t − 

bx

√a1




 erfc 




b √t  − 

x

2 √a1t








 ,   x < 0 ; (54)

T2 (x, t) = T20
∗

 − 
T20
∗

 − T10
∗

1 + Kε2

 



erfc 




− 

x

2 √a2t




 − exp 




b

2
t + 

bx

√a2




 erfc 




b √t  + 

x

2 √a2t








 ,   x > 0 , (55)

where the following connections between the parameters were used:

H1 √a1

b
 = 

1

1 + Kε1

 ;   
H2 √a2

b
 = 

1

1 + Kε2

 .

Conclusions. Thus, expressions (52) and (53) go over into the accurate solution (54), (55) obtained for this
case earlier [7], pointing to the validity of the analytical solution (52), (53). Equations (54) and (55) can also been ob-
tained directly from (40), (41), which proves the validity of the integral representation of (40), (41).
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NOTATION

a = λ ⁄ (cγ), thermal diffusivity; b, thermal mutual influence of half-spaces which depends on the degree of the
nonideality of their contact; c, isochoric specific heat; F1(x) = T10(x) ⁄ a1; F2(x) = T20(x) ⁄ a2; H = α ⁄ λ, reduced (rela-
tive) heat transfer coefficient; Kε1

 and Kε2
, criteria of the thermal activity of the first half-space relative to the second

and the second relative to the first one, respectively; s, complex variable in the Laplace transform; T, temperature; t,
time; x, coordinate; α, heat transfer coefficient; γ, density; ε, thermal activity; λ, thermal conductivity; ϕ and ψ, con-
jugate functions equal to the values of T1 and T2 at x = 0, respectively. Subscripts: 1 and 2, the first and second half-
spaces, respectively; 10 and 20, initial values related to the first and second half-spaces, respectively; L, sign of
Laplace transform.
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